
Zurich University of Applied Sciences
Department School of Engineering

Centre for Artificial Intelligence

PROJECT THESIS

Building a Vision-Based AI Demonstrator with
Unitree A1 Quadruped Robot

Authors:
Tenzin Samdrup LANGDUN
Martin OSWALD

Supervisors:
Prof. Dr. Thilo STADELMANN

Pascal SAGER

Submitted on
December 23, 2022

Study program:
Computer Science

i

Declaration of Authorship
We, Tenzin Samdrup LANGDUN, Martin OSWALD, declare that this thesis titled, “Building a
Vision-Based AI Demonstrator with Unitree A1 Quadruped Robot” and the work presented in
it are our own. We confirm that:

• This work was done wholly or mainly while in candidature for a research degree at this
University.

• Where any part of this thesis has previously been submitted for a degree or any other
qualification at this University or any other institution, this has been clearly stated.

• Where we have consulted the published work of others, this is always clearly attributed.

• Where we have quoted from the work of others, the source is always given. With the
exception of such quotations, this thesis is entirely our own work.

• We have acknowledged all main sources of help.

• Where the thesis is based on work done by ourselves jointly with others, we have made
clear exactly what was done by others and what we have contributed ourselves.

Signed:

Date: 23.12.022

Martin Oswald

ii

ZURICH UNIVERSITY OF APPLIED SCIENCES

Abstract
Centre for Artificial Intelligence

School of Engineering

Bachelor of Science

Building a Vision-Based AI Demonstrator with Unitree A1 Quadruped Robot

by Tenzin Samdrup LANGDUN, Martin OSWALD

One of the challenges in demonstrating the capabilities of Artificial Intelligence (AI) is find-
ing effective ways to showcase its abilities in a tangible manner. In this thesis, we present a
vision-based demonstrator for AI using the Unitree A1 quadruped robot. This demonstrator
is intended to be used by the Centre of Artificial Intelligence (CAI) at Zurich University of
Applied Sciences to exhibit the capabilities of AI in real-life settings, such as expositions. To
achieve this, we developed an application that allows the robot to respond to four specific hand
gestures. The software receives a live image feed from the integrated camera of the robot and
utilizes the MediaPipe framework for hand tracking and landmark points generation, which
is displayed on a Remote-PC in real-time. A Logistical Regression model that we trained on
3768 hand gesture recordings then detects a hand gesture made by a user standing in front
of the robot. This model communicates with the robot’s system, allowing for control over its
detection and posture through a user interface. In our laboratory tests, the robot demonstrated
an average precision of 91% for each gesture. However, we found that in environments with
strong or dim lighting, the robot’s performance is less reliable and leads to an accuracy of 70%.
To improve the performance of the robot in these conditions, we suggest implementing addi-
tional algorithms or finetuning the MediaPipe pipeline. Overall, our demonstrator provides a
valuable tool to the CAI department for showcasing AI, as it allows the audience to use intu-
itive gestures to interact with the robot and experience AI firsthand by seeing the immediate
reaction of the robot.

iii

Acknowledgements
We would like to thank Prof. Thilo Stadelmann and Pascal Sager for their valuable guidance
and support throughout the project.

iv

Contents

Declaration of Authorship i

Abstract ii

Acknowledgements iii

List of Figures vi

List of Tables vii

List of Abbreviations viii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 1
1.3 Work Outline . 2

2 Foundations and related works 3
2.1 Gesture Recognition Technologies . 3
2.2 Pose Estimation Systems . 4
2.3 Robot Operating System (ROS) . 5
2.4 Unitree Legged Software Development Kit . 6

3 Methods 8
3.1 Demonstrator Analysis . 8
3.2 Gesture Recognition . 9

3.2.1 Pose estimation . 10
3.2.2 Hand Gesture Recognition . 11

3.3 Implementation . 14
3.3.1 Robot Control . 14
3.3.2 User Interface . 15
3.3.3 Workflow . 18

4 Results 19
4.1 Demonstrating AI with A1 Robot . 19
4.2 Limitations . 19

5 Discussion and Future Work 21
5.1 Improving Usability and Robustness . 21
5.2 Enhancing the Capabilities of the Robot . 21
5.3 Conclusion . 22

A Appendix 23

v

A.1 Unitree A1 Instructions . 23
A.1.1 Connecting to Robot . 23
A.1.2 Driver Installation . 23
A.1.3 Connecting Robot to Internet . 24
A.1.4 Accessing the Camera Feed . 24
A.1.5 Unitree Legged SDK . 24
A.1.6 ROS . 25

Bibliography 26

vi

List of Figures

1.1 Unitree A1 Quadruped Robot . 1

2.1 Gesture Recognition Technologies . 3
2.2 Human Pose Estimation . 4
2.3 ROS Nodes . 6
2.4 Legged SDK . 7

3.1 Lab setup . 11
3.2 Wave gesture . 13
3.3 Spin gesture . 13
3.4 Up-down gesture . 13
3.5 Walk gesture . 13
3.6 SDK Diagram . 14
3.7 ROS Diagram . 15
3.8 UI Window . 16
3.9 Hand Wave Recognition . 16
3.10 UI Diagram . 17
3.11 Approach . 18

4.1 result demo . 19
4.2 Demo videos . 20

vii

List of Tables

3.1 Pose Estimation Comparison . 10
3.2 Gesture Recognition Comparison . 12
3.3 Gesture Recognition Lab Experiment . 12

viii

List of Abbreviations

PCA Principle Component Aanalisys
HMM Hidden Markov Model
AI Artificial Intelligence
ML Machine Learning
CV Computer Vision
ROS Robot Operating System
SDK Software Development Kit
ULSDK Unitree Legged Software Development Kit
API Application Programming Interface
UI User Interface
LLC Low Level Control
HLC High Level Control

1

1 Introduction

FIGURE 1.1: Unitree A1 quadruped robot [1].

1.1 Motivation

Artificial intelligence (AI) has become pervasive in our daily lives, with applications rang-
ing from spam-free email to personalized product recommendations on online shopping sites.
From healthcare to finance to transportation, AI is being used to automate tasks, improve effi-
ciency, and provide better services to customers. In fact, it is not easy to think of an industry
that AI has not impacted in some way. One of the driving forces behind the growing role of
AI is the economic opportunities it presents. A study by PriceWaterhouseCoopers estimated
that AI could increase global GDP by 14% or $15.7 trillion by 2030 [2]. Nevertheless, despite its
widespread adoption, many people who are not familiar with this technology might not fully
understand the capabilities of AI and struggle to identify its usage in their daily lives. In a
study conducted by Pegasystems, out of 6000 consumers who were asked whether they have
ever interacted with AI, 34% answered "no". However, 84% of the deniers actually had and
were unaware of it [3]. One way to address this need for more understanding is to create tangi-
ble demonstrators that allow people to interact with AI visually and intuitively. By providing
an interactive way for people to experience AI in action, tangible demonstrators can help to
make the concept of AI more accessible and concrete for those who may not fully understand
it. Seeing the technology in action and interacting with it firsthand could demystify AI and
make it feel more familiar and approachable. Such demonstrators could inspire people to learn
more about AI and its potential to shape the future in a fun and engaging way.

1.2 Problem Statement

This project aims to utilize the A1 robot to create a tangible demonstrator of AI that sparks cu-
riosity and inspires people to learn more about how it functions. By encouraging exploration
and questioning, this demonstrator should foster a greater understanding and appreciation for
the capabilities and potential of AI. The Unitree A1 quadruped robot provided to us by the

1 Introduction 2

Centre of Artificial Intelligence (CAI) department at the Zurich University of Applied Sciences
(ZHAW) is an excellent platform for building such a demonstrator. It can perform dynamic,
dog-like movements that can be programmed with an existing Sofware Developer Kit (SDK)
provided by Unitree [1]. It is equipped with a High-Definition camera that can be used to con-
struct a system that allows for human-machine interaction. Considering all the factors above,
we decided to build a vision-based demonstrator that uses the robot’s onboard camera to de-
tect gestures and let the robot respond in real-time with predetermined movement sequences.
In addition, the "vision" and hand detection of the robot should be visualized. By seeing the
robot recognize and respond to their gestures, users should understand better how AI works
and what it is capable of. We aim to provide a concrete example of how AI can be used to
enable machines to detect and respond to human inputs.

1.3 Work Outline

The first section of the thesis provides an overview of the foundations and related research in
this field. The second section details the methods and implementation of the gesture recog-
nition and discusses the choice of technologies and why they were selected based on certain
criteria. We also explain our experimental setup in detail, including the hardware and software
used, the data collection and annotation process, the evaluation metrics and procedures em-
ployed. In the third section, we present the results with a demonstration of its capabilities and
discuss any limitations or challenges encountered during the development process. The final
section offers a discussion of the implications of the work and suggests potential avenues for
future research.

3

2 Foundations and related works

This chapter examines research related to gesture recognition technologies and pose estimation
systems. As the aim of the thesis is foremost building a demonstrator and not comparing a
variety of models, we focus on the three pose estimation systems that are considered state-of-
the-art [4], [5].

2.1 Gesture Recognition Technologies

Hand Gesture Recognition belongs to the field of Human-Machine-Interaction. Early approaches
used statistical modelings, such as PCA and HMMs [6], as well as Particle Filter and Conden-
sation algorithms [7]–[9]. Modern methods leverage ML, computer vision (CV), Data-Glove,
and colored marker technologies [10].

Data-Glove approach (2.1a) utilizes gloves fitted with sensors. Researchers use various technolo-
gies to read the sensor data, such as magnetic, ultrasonic, optical, and inertial trackers [11]. The
gloves provide high accuracy regarding finger/palm location and orientation. Although very
precise, this method makes the interaction cumbersome, as special equipment is required [10].

Colored markers (2.1b) are special gloves that allow a system to track the hand and locate critical
points. These gloves usually have different colors, which allows for image segmentation. Sim-
ilar to the Data-Glove, this method limits the naturality of the interaction with the system, as it
requires wearing gloves. This approach is favorable when absolute precision in orientation is
not required [10], [12].

CV methods (2.1c) use the user’s bare hand to interact with the system, making the interaction
easier compared to the Data-Glove and marker approaches [12]. This approach usually utilizes
RGB or RGB-D cameras to capture images. Compared to RGB, RGB-D also records depth data.
It became viable when Microsoft released the Kinect camera, coincidentally causing a surge
in research in gesture and pose recognition using depth images [13]. The primary problem
hindering this system is that it needs to generalize to arbitrary situations. This approach can
work exceptionally well within well-lit, high-contrast environments [14].

(a) (b) (c)

FIGURE 2.1: data capture devices: (a) Data-Glove from [10], (b) Marker Gloves
from [12], (c) Hand image from [15]

2 Foundations and related works 4

2.2 Pose Estimation Systems

The CV methods described in Section 2.1 allow for gesture recognition using only a camera
or other visual sensor, eliminating the need for additional equipment like gloves. As this can
make the demonstrator more user-friendly and accessible to a broader audience, we solely
focus on systems that are built upon this technology. Pose estimation is a field of study in
computer vision that aims to determine and track the spacial position of an object. In Human
Pose Estimation, the goal is to identify and track key points, such as joints, eyes, head, and
hands from images or videos, as shown in Figure 2.2a [16]. Twenty-one key points have been
identified for hand pose estimation, as shown in Figure 2.2b. This is the de facto standard as is
implemented in the major pose estimation systems [5], [15], [17], [18].

In practice, the top-down and bottom-up methods are employed to address the pose estima-
tion problem: The top-down approach employs an object-detector and a pose-estimator. The
object-detector is responsible for detecting human bounding boxes in the image, and the pose-
estimator estimates the pose within each bounding box. This means that the pose-estimator
is applied to each detected bounding box, and the number of times the pose-estimator is exe-
cuted is proportional to the number of people in the image. When compared to the bottom-up
approach, the top-down approach is often more efficient and accurate, especially when there
is a clear view of the subject and the pose is relatively straightforward. This is due to the fact
that the object-detector usually only takes a single pass over the image (e.g. YOLOv7 [19]) to
extract the bounding boxes. However, it may be less accurate with occlusions and less effective
with complex or unusual environmental poses or changes. This is because the object-detector
is committed to the location and extent of the bounding box before the pose is estimated, which
can lead to inaccuracies if the bounding box is not accurately placed or is too small or large [16],
[17].

On the other hand, the bottom-up approach starts from the raw pixel data and works upward
to identify and classify the different components within the image. This approach typically in-
volves extracting local features from the image, such as edges, corners, or blobs, and grouping
them into larger structures, such as lines, contours, or regions. These structures are then used
to identify body parts, such as the head, shoulders, arms, and legs. The bottom-up approach is
generally more robust to variations in appearance or changes in the environment, as it relies on
the local information in the image rather than external models or prior knowledge. However,
this approach may face challenges in grouping body parts when there is considerable overlap
between people or when the poses are highly variable or unusual [16], [20], [15].

(a) (b)

FIGURE 2.2: (a) Human pose estimation with key points and rigid parts from
[16]. (b) Hand key points from [17]

2 Foundations and related works 5

In this thesis, we examine pre-trained, state-of-the-art [4], [5] pose estimation systems for our
demonstrator instead of implementing a novel solution due to time constraints and resources
available for training a pose estimation model from scratch. By leveraging pre-trained mod-
els, we can build a functional prototype within a shorter time frame than by implementing a
completely novel model.

AlphaPose is a real-time human pose estimation system that uses Convolutional Neural Net-
works (CNNs) and Pose-Guided Attention to identify and estimate poses in images and videos.
It is a top-down approach that can run in real-time and achieve high accuracy on benchmark
datasets, including COCO [20] and PoseTrack [21]. AlphaPose is able to handle occlusions,
making it suitable for various applications, such as action recognition, human-computer inter-
action, and sports analysis [16], [17].

OpenPose is a real-time human pose estimation system that uses CNNs and part affinity fields to
identify and estimate poses in images and videos. This system utilizes a bottom-up method and
can operate in real-time while maintaining high precision on benchmark datasets like COCO
[20] and MPII [22]. The bottom-up approach makes OpenPose scale-invariant, allowing it to
track multiple people simultaneously[16], [20].

MediaPipe Hands is a real-time hand-tracking system that uses CNNs to track and extract hand
landmarks from images and videos. It utilizes a bottom-up approach that first detects palms
and localizes hand landmarks. It is a highly portable and reliable framework for various set-
tings, including mobile devices, web applications, and desktop systems[15], [23].

2.3 Robot Operating System (ROS)

This section focuses on the original ROS [24], not the newer ROS-2 version, as the Unitree A1
robot driver currently only supports ROS-1. ROS is a free and open-source software platform
for robot development, allowing users to create robot applications quickly and easily. ROS
provides a standard set of software libraries and tools that can be used across a wide range
of robot hardware platforms, enabling users to create complex robot behavior without having
to deal with the low-level details of the individual hardware components. It is widely used
in academia and industry to develop a wide range of robot applications, including robots for
manufacturing, inspection, and service tasks. One of the critical features of ROS is its modular
design, which allows developers to create and reuse software components. This modularity
allows developers to create custom solutions tailored to their specific needs and requirements
and to easily add new features and functionality as needed [25].

This is achieved through the concept of nodes and topics [24]. Nodes are individual software
components that can be combined and integrated into larger, more complex systems. Each
node is designed to perform a specific task or function and can communicate with other nodes
to exchange data and information. Nodes can publish messages to a topic, and other nodes can
subscribe to that topic to receive the messages. More specifically, a topic is a named pipe that al-
lows nodes to communicate with each other and with the rest of the system, even if they are not
directly connected. This ’publish/subscribe’ communication model decouples the production
of information from its consumption, allowing for flexible and scalable communication within
a robot system [26]. Every node is registered with a ROS Master responsible for managing the
overall organization and communication within a ROS system [24].

ROS is built on a package system, where code is organized into self-contained units called pack-
ages [27]. The ROS community includes many developers who create and maintain packages

2 Foundations and related works 6

for various applications and use cases [28]. Packages for the A1 robot are also available, such
as the Unitree-ROS packages that enable virtual simulations of the robot [29].

Figure 2.3 illustrates how a ROS package for the A1 robot could be designed to record camera
and processed images with generated landmarks. The camera node is responsible for getting
raw images from its onboard camera and publishing the image data to an image topic. The
image processing node (IPN), which is subscribed to the image topic, receives the raw data as
a message. The IPN, in this case, is a pipeline that detects hands and generates superimposed
landmark points. It publishes the processed image data to the processed image topic. The
recorder node is subscribed to both the image and the processed image topics. As soon as
it receives messages, it records them in a ROS bag [30] file. These nodes can be developed
independently, combined, and integrated into a single, cohesive system.

FIGURE 2.3: An example on how ROS nodes can be used in a real application
[31].

2.4 Unitree Legged Software Development Kit

The Unitree Legged Software Development Kit (ULSDK) toolkit allows developers to create
software for controlling a quadruped robot [32]. It offers two control modes: low-level and
high-level [33].

Low-level control (LLC) allows the user to control the joints of the robot and apply force to them
precisely. Figure 2.4 illustrates the axis and joints that can be manipulated. This mode is help-
ful for fine-tuned movements and tasks that require a high degree of control over the robot’s
movements. Projects that involve adjusting the locomotion of quadruped Unitree robots rely
on this mode to fine-tune their movements [34].

In contrast, high-level control (HLC) allows the user to make the robot walk, change its posi-
tion, and perform pre-configured movement sequences. This mode is useful for tasks that re-
quire the robot to move around and interact with its environment, such as navigating through a
cluttered space or avoiding obstacles. While in low-level control, one has complete control over
the robot’s mobility, high-level control only allows one to execute a limited set of movements.
However, One unique aspect of the ULSDK is that it communicates using ’structs’ rather than

2 Foundations and related works 7

function calls. A struct is a collection of parameters that can be assigned values, allowing the
user to configure the robot’s behavior easily. For example, setting the "cmd.mode" parameter
to "2" will transition the robot into walking mode [33].

Overall, the ULSDK offers a flexible and powerful way to control a four-legged robot, with both
low-level and high-level control modes to suit various tasks and scenarios. A detailed guide to
using the ULSDK is added to Appendix A.

FIGURE 2.4: Joints that can be controlled in low-level mode [33].

8

3 Methods

In this chapter, we describe upon which criteria we built our demonstrator and present a
method and an implementation for gesture recognition using pose estimation and machine
learning techniques. Our system operates as follows: First, a frame is captured by the robot’s
camera. We then use pose estimation to extract hand key points from the frame. These key
points are stored in a queue, enabling us to represent temporal information. Subsequently, the
entire queue is processed by an ML classifier. If the classifier is confident that it has identified
a gesture, it triggers the robot to execute the corresponding action.

3.1 Demonstrator Analysis

As this thesis aims to build a tangible demonstrator for AI, the first crucial step is to examine
which attributes a demonstrator should have to arouse the audience’s interest successfully. Out
of our problem statement, we derived four main goals the demonstrator should fulfill:

• Powered by AI: The aim is to demonstrate AI; hence, the demonstrator should be powered
or assisted by AI.

• Captivating: When used at an exposition, the demonstrator should attract visitors and
encourage them to engage in a conversation with the exhibitors.

• Usability: To improve usability, operating the demonstrator should not require any knowl-
edge of AI or programming. The demonstrator must be able to execute the demonstration
within any confined, well-lit space not smaller than 3 m x 3 m.

• Scalable: The development framework should allow adding new features so that we can
scale the capabilities in the future more conveniently.

After analyzing existing demonstrators for quadruped robots [34]–[38] we identified two dif-
ferent types of demonstrators:

• Task-based: An example for a task-based demonstrator is displaying locomotion skills [34],
[37]. The quadruped robot walks around and imitates the gait patterns of real-world an-
imals, such as dogs. Such demonstrators are developed to show the potential of Rein-
forcement Learning [34]. They are not dependent on human interactions but remotely
activated by an operator and aim to complete a predetermined task.

• Interaction-based: Interaction-based Demonstrators require human input. Those inputs
can be either physical (touching the robot), visual-based (gestures), or sound-based (voice
commands) [38].

Considering the points above, we decided to implement a visual-based demonstrator that ac-
cepts human gesture inputs and reacts with a set of movement sequences. Such a visual-based
demonstrator is more suited for fulfilling the criteria above than a sound or task-based demon-
strator due to the following reasons:

3 Methods 9

• Robots that move based on human-machine interactions have been shown to increase
attention, and attention span in children [39]. Reactions of the robot that involve move-
ments have the potential to be perceived as entertaining to the audience [38]. Research
shows that the movements of a robot, indicating that it is paying attention, can lead to
a significantly higher willingness to engage with it [40]. Thus, in terms of keeping the
audience engaged, an interactive demonstrator is superior to a task-based one.

• Task-based demonstrators that rely on pathfinding and locomotion require larger spaces
than interactive demonstrators with shorter movement sequences [35]. Therefore, this
could cause some difficulties for an exhibitor to create enough space among a crowd of
visitors to demonstrate locomotion skills. The A1 robot does not have an onboard mi-
crophone; therefore, it cannot record voice inputs without equipping it with an external
microphone. However, it is equipped with an onboard camera that enables it to receive a
real-time video feed.

• Training the robot to walk like an animal is considered quite challenging [34]. Although
there are existing platforms to train new gaits [41], adding new gaits does not add any
functionality or capability to the robot. However, with a new platform that divides the
functionality of an interactive demonstrator in three modules, namely User Interface (UI),
input recognition (AI) and robot control, future contributors are able to update or swap
out the input recognition with their recognition technology of choice and add new move-
ments to the robot control. This would even allow the fusion of task-based actions and
interaction-based inputs.

In the following section, we explain how we select the best suited gesture recognition
technology for our demonstrator.

3.2 Gesture Recognition

Incorporating gesture recognition technology into an AI demonstrator using a quadruped robot
enhances the system’s ability to interpret and respond to human input more interactively. This
can facilitate the robot’s interactions with its environment, rendering them more natural and
intuitive for the human operator. In order to identify the best technology for this project, it is
important to consider a range of criteria. We define the following benchmarks to determine the
best fit for our specific requirements and goals:

• Performance: The technology should be able to accurately and reliably recognize gestures
in real-time, with minimal latency or errors.

• Compatibility and interoperability: The technology should be compatible with the robot’s
hardware and software, and should be able to integrate seamlessly with other project
components as defined in Subsection 3.3.2.

• Ease of use: The technology should be user-friendly and straightforward to implement,
requiring minimal expertise or specialized knowledge because time constraints are an
essential consideration.

• Documentation and support: The technology should have comprehensive documentation
and support resources available, such as tutorials, user guides, and forums.

3 Methods 10

3.2.1 Pose estimation

In order to determine the best framework for our purposes of pose estimation, we conducted
a comprehensive comparison of three leading frameworks: AlphaPose, OpenPose, and Medi-
aPipe. Our evaluation was based on a set of benchmarks that were defined in Section 3.2. The
results of our comparison are summarized in Table 3.1 and discussed in more detail below.

• Performance: To assess the framework’s suitability for our project, we conduct a perfor-
mance evaluation in a controlled, well-lit lab environment using a laptop with a built-in
webcam. The laptop is equipped with an Intel I7-12700h CPU and 16 GB of RAM, but
does not have a dedicated GPU. The laptop is positioned approximately 1 meter away
from the subject and records a simple hand wave gesture. We measure each framework’s
average frames per second (fps) achieved while processing the gesture in real-time. The
results indicate that MediaPipe has the highest average fps of 28, followed by AlphaPose
with 25 fps, and OpenPose with 11 fps.

• Compatibility and interoperability: MediaPipe can be installed using the pip package man-
ager for Python, while AlphaPose requires local compilation from the source code using
a Python script. OpenPose requires installation from source code using the ’make’ build
tool. All the frameworks have a Python API and are compatible with major operating
systems.

• Ease of use: MediaPipe is the easiest to use as it simply allows importing its packages in
the installed environment. AlphaPose has the best customization options. It allows one
to choose between many classifiers and on what training datasets the models are built.
As OpenPose is primarily a C++ library, its Python API is not fully supported.

• Documentation and support: OpenPose has the most comprehensive documentation, with
a dedicated documentation page that is well-structured and extensive. MediaPipe offers
a single page containing a quick start guide for hand pose estimation, and AlphaPose
provides only example scripts.

Fr
am

ew
or

k

Pe
rf

or
m

an
ce

C
om

pa
ti

bi
li

ty
an

d
in

te
ro

pe
ra

bi
li

ty

Ea
se

of
us

e

D
oc

um
en

ta
ti

on
an

d
su

pp
or

t

AlphaPose + + + -
OpenPose - - - ++
MediaPipe ++ ++ ++ +

TABLE 3.1: Comparison of the pose estimation frameworks AlphaPose, Open-
Pose, and MediaPipe according to the criteria defined in Section 3.2

Table 3.1 illustrates the comparison between OpenPose, AlphaPose, and MediaPipe. It is im-
portant to note that the grades with "+" and "-" are relative to one another and reflect our as-
sessment of each framework’s relative strengths and weaknesses in each category. Specifically,
we chose a framework that we believe is the best, neutral, and worst compared to the other
options within each category.

After thoroughly evaluating the available pose estimation frameworks, we have determined
that MediaPipe is the most suitable option for our project. One of the primary considerations
in our decision was that MediaPipe is production-ready and has a well-documented API, which

3 Methods 11

facilitates its implementation and integration into our project. Furthermore, MediaPipe exhib-
ited superior performance in our experiments compared to the other frameworks we evaluated.
MediaPipe’s installation process, which utilizes the pip package manager for Python, is signif-
icantly more streamlined than the other frameworks, which require building from source code.
Given these factors, MediaPipe represents the optimal choice of technology for our project.

3.2.2 Hand Gesture Recognition

A dataset of 3768 hand gestures was collected using the Unitree A1 robot in a well-lit laboratory
environment, as depicted in Figure 3.1. The subject was positioned at various distances and
angled to record each gesture, as shown in Figures 3.2, 3.3, 3.5, and 3.5d. The dataset includes
600 samples for each gesture and 1368 random move samples, which serve as a baseline to
prevent the machine learning classifier from wrongly classifying every slight movement as a
gesture.

FIGURE 3.1: Lab environment setup within a well lit room

Multiple quantitative metrics were used to evaluate the system’s performance, including accu-
racy, precision, recall, f-score, and classification time. Our primary focus is classification time,
as the system must perform in real-time. We further prioritize accuracy over recall, as it is
more critical that the system does not perform actions in response to random moves than that
it detects every single gesture.

Table 3.2 presents the results of our comparison of various machine learning classifier algo-
rithms on a gestural recognition task. In order to establish a baseline for comparison, the hy-
perparameters for all classifiers were left at their default values. We conducted 70,000 runs
for each classifier to determine the average classification time. The Random Forest classifier
exhibited the highest accuracy, achieving 97.6%. The Decision Tree classifier demonstrated the
quickest performance, with an average classification time of 67µs. As a result, we selected
the logistic regression classifier, which achieved a good balance between these two factors. It
attained an accuracy of 94.7% and an average classification time of 122µs.

A concern with using the pose estimation framework for hand tracking is determining which
hand to track when multiple people are present. To address this issue, we implemented a strat-
egy of tracking the hand closest to the robot. This was achieved by calculating the distance

3 Methods 12

Classifier Accuracy Precision Recall F-score classification time

Logistic Regression 0.9469 0.9532 0.9452 0.9487 122µs ± 7.16µs
SVM 0.8395 0.8666 0.8137 0.7976 2.86ms ± 34.8µs
Naive Bayes 0.6659 0.6507 0.6540 0.6499 279µs ± 5.72µs
Random Forest 0.9761 0.9740 0.9665 0.9698 7.39ms ± 222µs
Decision Tree 0.8177 0.8040 0.8098 0.8044 67µs ± 4.03µs
K-nearest neighbour 0.8828 0.8787 0.8767 0.8688 4.64ms ± 680µs
AdaBoost 0.6442 0.6649 0.6256 0.6293 1.39ms ± 39.2µs
Gaussian Process 0.9327 0.9275 0.9186 0.9213 324ms ± 2.84mss
Neural Net 0.9002 0.8939 0.9044 0.8921 41.6ms ± 981µs

TABLE 3.2: Comparison of different ML approaches to classify the gestures de-
fined for the project

between the key points 0 and 5 (see Figure 2.2b) and selecting the hand with the greatest dis-
tance. This approach effectively allows the application to distinguish between multiple hands
and accurately track the desired one.

Gesture Hits Errors Accuracy

Wave 25 0 1.00
Up-Down 18 7 0.72
Spin 24 1 0.96
Walk 24 1 0.96

Average 0.91

TABLE 3.3: Detection accuracy of the different gestures in the lab.

We conducted a lab experiment to evaluate the gesture recognition capabilities of our applica-
tion under optimal conditions using the logistic regression classifier. The setup included good
lighting conditions and a generic background as depicted in Figure 3.1 with a subject posi-
tioned about 1 meter in front of the robot. Each gesture was tested 25 times for a total of 100
runs. Table 3.3 shows that the overall accuracy of the gesture recognition system is 91%. How-
ever, the up-down gesture is a challenge for the pose-estimation framework, as it struggles to
extract hand key points accurately. As a result, the accuracy for this gesture was 72%, while the
other gestures have accuracy rates of 96% and 100%.

3 Methods 13

(a) (b) (c) (d)

FIGURE 3.2: Wave gesture: (a) hand wave gesture, (b), (c), (d) robot standing still
and leaning laterally from side to side.

(a) (b) (c) (d)

FIGURE 3.3: Spin gesture: (a) hand spin gesture, (b), (c), (d) robot spinning
around itself

(a) (b) (c) (d)

FIGURE 3.4: Up-down gesture: (a) hand up-down gesture, (b), (c), (d) robot
atanding still and moving up and down

(a) (b) (c) (d)

FIGURE 3.5: Walk gesture: (a) hand walk gesture, (b), (c), (d) robot walking diag-
onally and turning

3 Methods 14

3.3 Implementation

In this section, we describe the software architecture design choices that were made for the
project. Specifically, we outline the various components, their relationships, and the decisions
and considerations that influenced the overall design. This information is crucial for under-
standing the functionality and capabilities of the software, as well as the trade-offs and limita-
tions that were considered during the development process.

3.3.1 Robot Control

To communicate with the robot, the first step is to establish a connection. The A1 robot officially
only offers two different types of connections:

1. Connection to remote PC via Ethernet

2. Connection to remote PC via Wireless hotspot

Although the robot has a wireless hotspot, it cannot connect to other wireless networks without
additional hardware. Therefore, to directly connect to a router, it is necessary to use either an
Ethernet-to-USB adapter or a Wi-Fi dongle. Out of these options, we chose to connect to the
robot with Wi-Fi as it does not restrict the robot’s movement compared to Ethernet.

Once a connection with the robot has been established, it can be controlled using the Unitree
Legged SDK (ULSDK). We developed commands such as "walk" and "wiggle" using the SDK
and wrote a bash script to run these commands. The bash script can be triggered by calling it
via Secure Shell (SSH) from the remote computer. As illustrated in Figure 3.6, we can effectively
control the robot’s movements using the SDK and a bash script. Another option would be to

FIGURE 3.6: Communication with robot via Unitree Legged SDK.

develop a ROS package that contains nodes that are based on the ULSDK. Figure 3.7 demon-
strates the control of the robot using a ROS package. The remote computer sends commands via
Secure Shell (ssh) and runs the ROS package. The command node receives the commands, pro-
cesses them, and publishes them to the command topic. The SDK node, which is based on the
ULSDK, is subscribed to the command topic and receives the processed commands. The com-
mands are then executed using the ULSDK, thus causing the robot to move as instructed. While
ROS can be a valuable tool for developing complex and sophisticated software for controlling a
robot, it is not always the best choice for every situation. In the case of simply moving the robot,
using the ULSDK alone may be a better option, as developing a ROS package requires more

3 Methods 15

time and ROS expertise. Additionally, one of the most important advantages ROS provides is
the package library. However, for our use case, there were no fitting packages available that
would add value to the demonstration. The downside to our approach of communicating with
the robot via SSH and ULSDK is that passing custom commands directly with a Command-
Line-Interface (CLI) is not possible with their provided control templates [32]. This is due to
the ULSDK creating a UDP connection between the controller and the Nvidia board to pass
commands, which creates an endless loop and thus an encapsulated process.

FIGURE 3.7: Communication with robot via ROS.

3.3.2 User Interface

We implemented a modular design with three separate processes that communicate with each
other using Websockets. The architecture shown in Figure 3.10 was designed to ensure efficient
and reliable communication between the remote PC and the robot. The incorporation of multi-
processing prevents the User Interface (UI) and gesture recognition process from blocking each
other. The UI allows the user to toggle the gesture recognition and sitting position of the robot
(3.8).

3 Methods 16

FIGURE 3.8: The UI allows the user to toggle sitting position and gesture recog-
nition.

The gesture recognition module is controlled by the UI and captures images, performs pose
estimation, and recognizes gestures. It also visualizes hand tracking and gesture recognition,
which has the benefit of informing the user if their gesture is detected.

FIGURE 3.9: The gesture recognition is visualized on the remote PC. The top left
text indicates the detected gesture, and below it states the confidence.

3 Methods 17

The command-executor module controls the actions of the robot based on the recognized ges-
tures. This modular design allows us to easily toggle the gesture recognition feature and con-
trol the robot’s actions while maintaining the independence and encapsulation of each process.
Such a framework enables us to effortlessly swap out modules and add additional features in
the future if needed.

FIGURE 3.10: Three processes that run independently on multiprocessing: UI,
gesture recognition and command executor.

3 Methods 18

3.3.3 Workflow

In this subsection, we describe the workflow of our demonstrator (3.11). The following steps
are executed with the robot turned on:

1. Connect remote-PC to the robot via UI.

2. Turn on gesture recognition and make the robot sit via UI.

3. Perform hand gestures in front of the robot.

4. Robot records and creates hand landmarks for a sequence of images and queues them for
classification.

5. Logistical regression model classifies gesture.

6. Robot receives the corresponding command and executes it.

FIGURE 3.11: Demonstrator workflow: 1. collect an image, 2. extract key points,
3. queue key points, 4. classify queue, 5. perform action

19

4 Results

This thesis presents an AI demonstrator that utilizes a Unitree A1 quadruped robot to detect
and classify hand gestures. We employed pose estimation through the MediaPipe framework
and implemented a logistic regression classifier to classify hand gestures. In a laboratory test,
the demonstrator achieved an average accuracy of 91% across four different gestures in de-
tecting and classifying hand gestures. The subsequent sections of this study will discuss the
methods employed to demonstrate the capabilities of AI in this system and the system’s limi-
tations.

4.1 Demonstrating AI with A1 Robot

We had the opportunity to showcase the demonstrator at an event where it garnered some
attention. The attendees stood in front of the robot and performed gestures, as shown in Figure
4.1, where a participant waves at the robot, and the robot reacts by leaning laterally from side
to side. The feedback towards the demonstrator was overall positive. To further demonstrate
the capabilities of the demonstrator, we provide QR codes in Figure 4.2 that showcase videos
from the event, where a participant performs various gestures in front of the robot. The robot
was able to detect the gestures successfully. In some positions where the robot faced strong
direct light, it only detected 7 out of 10 gestures correctly. Like in the lab, it struggled the most
with recognizing the up-down motion, detecting only 5 out of 10 gestures correctly.

(a) (b)

FIGURE 4.1: (a) Participant performing a wave gesture towards the robot, (b)
robot leaning from side to side as a response.

4.2 Limitations

Although the detection performs exceptionally well in evenly lit lab environments or outside
in daylight, it struggles with certain undiffused lighting. We experienced this at the previous
section’s event, where strong lights directly shined upon the robot’s camera. As the robot has a
relatively shallow field of view, we programmed it to lower its hind legs to shift its view up in
order to get a full view of the upper body of the person standing in front of it. Due to the view-
ing angle, it is susceptible to facing intense direct light from the ceiling, which may be a reason
for false detection. In that case, Mediapipe is not always able to track hands accurately with

4 Results 20

wiggle up and down motion spin walking

FIGURE 4.2: Robot demonstration videos

the robot camera, which impacts the reliability of our gesture recognition system. It also cannot
reliably detect the up-down gesture. Out of ten gestures, only five were correctly detected and
classified.

The aforementioned stance modification is needed due to the robot having a relatively shallow
field of view. In its standard standing position, the robot’s vision is limited to the user’s knees.
As a result, the user would have to lower their posture to knee level in order to have their hand
gestures detected. While our solution allows the user to give commands while standing, it also
introduces an additional step where the robot must revert to its standard standing position in
order to execute a command. This can lead to delays for the user, as they are forced to wait for
the robot to finish executing a command before giving a consecutive command.

A drawback of a demonstrator solely based on ULSDK is, that passing custom commands
directly with a CLI is not possible, as mentioned in Chapter 3. As described in Appendix A,
the commands must first be defined in a file and then called via terminal. This prevents the
user from issuing new movement patterns in real-time. Additionally, the movement sequences
we developed are relatively simplistic. The ULSDK on the robot is not yet been updated by the
supplier to its newest version yet and therefore lacks more complex features such as dancing
and performing backflips. Furthermore, ensuring that the robot is unobstructed within a radius
of 2 meters is crucial to prevent accidents, as our system currently lacks a collision avoidance
system.

21

5 Discussion and Future Work

5.1 Improving Usability and Robustness

In terms of robustness of the demonstrator, there is still room for improvement. To enhance
the detection, one could either try to tune the MediaPipe library [42] or experiment with a
different detection framework. The MediaPipe Machine Learning pipeline includes a palm
detection model that identifies the position and orientation of the hand, and a hand landmark
model that accurately locates 3D keypoints on the hand by analyzing the cropped image region
identified by the palm detector. Therefore, to reduce detection errors, one can either retrain the
palm detector or optimize the keypoints locator algorithm. The former is the easier option, as it
only requires you to retrain the detector on new data. The latter is considered more laborious,
as the labeling of the data can pose a challenge [42]. The new data should be recorded in
environments that MediaPipe struggles with and also contain the defined gestures.

To improve the experience for the user, the UI could be fully replaced by a system that recog-
nizes voice commands and handles the detection mode and stance accordingly. By strapping a
microphone and small loudspeakers to the robot, the system could confirm the commands ver-
bally as well as inform the user on its capabilities. When connected to our Command-Executor
module, it could even serve as an additional input source and be used to steer the robot. To
implement such a system, state-of-the-art speech recognition technologies should be compared
and evaluated [43]. Additionally, some thought should go into how to filter out background
noises as well as overlapping voices. If these considerations are not addressed, the presence of
multiple individuals speaking near the robot at expositions may cause the speech recognition
feature to either mistakenly activate or fail to activate altogether [44].

5.2 Enhancing the Capabilities of the Robot

Implementing a collision detection system would not only prevent the robot from taking dam-
age, but also protect bystanders from getting injured. The A1 robot is equipped with an inte-
grated depth camera that can capture depth images. These images provide distance data that
can be utilized to create a collision avoidance system for the robot [45], [46]. This system would
automatically halt the robot’s movement if it detects that it is approaching an object too closely.
However, this system based on the depth camera can only detect objects in the front and does
not prevent lateral or backward collisions.

A more holistic solution would be to attach a Light Detection and Ranging (LiDAR) device,
which is officially supported by the A1 robot. LiDAR is often used in self-driving cars and
robotics to enable Simultaneous Localization and Mapping (SLAM) [35]. SLAM is a process
by which a robot or vehicle can determine its position and orientation within an unknown
environment, while simultaneously creating a map of that environment. This is done by using
sensor data, such as LiDAR, to detect features in the environment and to measure the distances
between them. By combining this data with algorithms that track the movement of the robot
or vehicle, it is possible to build a map of the environment and to determine the robot’s or

5 Discussion and Future Work 22

vehicle’s position within that map [35]. In addition, this feature could be combined with a
track and follow algorithm that allows the robot to walk behind or alongside a designated
person [47]. LiDAR could also serve as a replacement to the integrated camera of the robot
for gesture recognition. A recent paper by Chamorro et al. [48] demonstrates how LiDAR can
detect gestures 360 degrees around the robot. Although it did not outperform systems based
on stereo imagery regarding accuracy, it added robustness to lighting conditions and enabled
omnidirectional usage [48]. The combination of LiDAR and the integrated camera offer a great
foundation for developing robust industry solutions, such as automated surveillance of wind
energy stations [36]. For example, the robot could be programmed to patrol a predetermined
path and detect any anomalies that indicate infrastructure damage.

We recommend to use ROS as developing platform for all the suggestions in this section as
Quadruped [49] as well as Unitree [29] offer ROS packages for Teleoperation, SLAM, navigation
and simulations.

5.3 Conclusion

The demonstrator, we built and trained in the lab, performed well in real-world situations as
well. It was able to attract an audience to the robot and enticed them to engage with it. We
found that MediaPipe performs well in most situations, but is not reliable in detecting hands
in strong light. However, due to our modular platform, new features and capabilities can be
added swiftly and thus serves as a great starting point for future contributors wanting to work
with the robot. In the future, a ROS-based demonstrator could further enhance the scalability
of the software and certainly needs to be considered when developing new features.

23

A Appendix

The code and files necessary to run the demonstrator can be found on our Github repository:
https://github.com/oswald-martin/zhaw_pa_robodog

A.1 Unitree A1 Instructions

Most of the instructions needed to operate the robot can be found on the Quadruped website:
https://www.docs.quadruped.de/projects/a1/html/index.html.

A.1.1 Connecting to Robot

A1 has its own native hot-spot to which users can connect to. The SSID of the Wifi network of
A1’s hot-spot begins with UnitreeRoboticsA1 and the default password is 00000000.

Once connected to the WiFi network, one can access A1’s Nvidia IP address 192.168.131.12
as well as the Raspberry Pi’s IP address 192.168.123.161. To achieve this enter the command
terminal of the computer that has connected to the WiFi hot-spot of the robot and enter the
following:

To connect with the Nvidia’s on-board PC:

ssh -X unitree@192.168.123.12
123

To connect with the Raspberry Pi’s on-board PC:

ssh -X unitree@192.168.123.161
123

Beware that contrary to the official documentation, the IP’s of the Raspberry Pi and Nvidia
board are switched on this model.

The Nvidia board is the one you should be using as it has all the drivers installed. The Rasp-
berry Pi is supposed to be the main PC, however the ULSDK does not work on there. The
Nvidia board is also much more powerful than the Raspberry Pi and is well suited for Machine
Learning.

A.1.2 Driver Installation

The robot has already been configured successfully. However, should there arise a need to rein-
stall the drivers the following instructions might prove useful. The driver can be downloaded
from https://my.hidrive.com/share/0y.4q83h08#$/.

https://github.com/oswald-martin/zhaw_pa_robodog
https://www.docs.quadruped.de/projects/a1/html/index.html
https://my.hidrive.com/share/0y.4q83h08#$/

A Appendix 24

Make sure to delete everything in the catkin_ws folder on the Nvidia board first. Download the
files and transfer them to the robot and run the installation script with the following commands
via remote-pc terminal:

scp -r A1_3.2.0 unitree@192.168.123.12://home/unitree
ssh -X unitree@192.168.123.12
123
sudo chmod +x a1_installation_script.bash
./a1_installation_script.bash

Detailed instructions for installing the drivers are in the README file. For troubleshooting,
the forum might be helpful:

https://forum.mybotshop.de/t/controlling-robot-via-vm/432/30

A.1.3 Connecting Robot to Internet

The instructions in the official documentation did not work and required IP configurations. The
better alternative is to use an Ethernet-to-USB adapter. If it does not work immediately, it might
be necessary to create a new connection in the NetworkManager first. Note that although the
A1 has a WiFi hotspot, it is not able to connect to another WiFI network.

A.1.4 Accessing the Camera Feed

1. Connect PC to the robot with WiFi

2. Open a browser and enter: 192.168.123.12:8080

A.1.5 Unitree Legged SDK

The SDK version that is currently installed is 3.2.0. A newer SDK will be available soon that
unlocks many features such as dancing and jumping. The GitHub repository will be updated
as soon as it is released by Quadruped.

Controls

The Unitree Legged SDK has a high level and low level mode. Only one mode can be used at
a time. High level commands enable the robot to walk, tilt and perform tricks.

Running the files

The SDK and its control files are in the catkin_ws/utils/unitree_legged_sdk-3.2.0 folder. The
C++ files we coded to steer the robot are all in the ’examples’ folder. New control files need
to be built first. First, add the new file to CMakelist.txt, then navigate to the build folder and
enter the following commands:

cmake ../
make

If you rebuild an already built file, make sure to delete or clean the build files in the build
directory.

Then run the file with:

https://forum.mybotshop.de/t/controlling-robot-via-vm/432/30

A Appendix 25

sudo ./example_walk

Building a new command file

The files in catkin_ws/utils/unitree_legged_sdk-3.2.0_examples are example files that can serve
as a template. We chose the example_walk file as a template for our commands. Keep in mind
to not change the IP’s in the UDP constructor. Here are the modes that one can configure in the
current SDK version:

uint8_t mode; // 0.idle, default stand | 1.force stand
// 2. walking

A detailed list of the commands can be found in the catkin_ws/utils/unitree_legged/sdk-
3.2.0/include/unitree_legged_sdk/comm.h. Don’t forget to build every file you created and
add them to CMakelist.txt.

A.1.6 ROS

How to launch high level mode:

sudo su
source ~/catkin_ws/devel/setup.bash
roslaunch qre_ros high_level_mode.launch

How to launch low level mode:

sudo su
source ~/catkin_ws/devel/setup.bash
roslaunch qre_ros low_level_mode.launch

How to launch teleoperation (real-time control with keyboard):

sudo su
source ~/catkin_ws/devel/setup.bash
rosrun teleop_twist_keyboard teleop_twist_keyboard.py

26

Bibliography

[1] Unitree A1 Quadruped Robot, 2020. [Online]. Available: https://www.unitree.com/a1/.
[2] PriceWaterhouseCoopers, “Sizing the prize: What’s the real value of AI for your busi-

ness and how can you capitalise?” PriceWaterhouseCoopers, Tech. Rep., 2017. [Online].
Available: https://www.pwc.com.au/government/pwc-ai-analysis-sizing-the-
prize-report.pdf.

[3] Pegasystems, “What Consumers Really Think of AI: A Global Study,” Pegasystems, Tech.
Rep., 2019. [Online]. Available: https://www.pega.com/ai-survey.

[4] N. Ienaga, S. Takahata, K. Terayama, et al., “Development and Verification of Postural
Control Assessment Using Deep-Learning-Based Pose Estimators: Towards Clinical Ap-
plications,” Occupational Therapy International, vol. 2022, pp. 1–9, Nov. 2022, ISSN: 1557-
0703. DOI: 10.1155/2022/6952999.

[5] J. Docekal, J. Rozlivek, J. Matas, and M. Hoffmann, “Human keypoint detection for close
proximity human-robot interaction,” Jul. 2022. DOI: 10.48550/arxiv.2207.07742.
[Online]. Available: https://arxiv.org/abs/2207.07742v1.

[6] J. Yamato, J. Ohya, and K. Ishii, “Recognizing human action in time-sequential images
using hidden Markov model,” in Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, vol. 1992-June, 1992. DOI: 10.1109/CVPR.1992.
223161.

[7] M. Isard and A. Blake, “CONDENSATION - Conditional Density Propagation for Visual
Tracking,” International Journal of Computer Vision, vol. 29, no. 1, 1998, ISSN: 09205691. DOI:
10.1023/A:1008078328650.

[8] C. Kwok, D. Fox, and M. Meilǎ, “Real-time particle filters,” in Proceedings of the IEEE,
vol. 92, 2004. DOI: 10.1109/JPROC.2003.823144.

[9] S. Mitra and T. Acharya, “Gesture Recognition: A Survey,” IEEE Transactions on Systems,
Man and Cybernetics, Part C (Applications and Reviews), vol. 37, no. 3, pp. 311–324, May
2007, ISSN: 1094-6977. DOI: 10.1109/TSMCC.2007.893280.

[10] N. A. Ibraheem and R. Khan, “Survey on various gesture recognition technologies and
techniques,” International journal of computer applications, vol. 50, no. 7, pp. 38–44, 2012.

[11] L. Dipietro, A. M. Sabatini, and P. Dario, “A survey of glove-based systems and their
applications,” IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and
Reviews, vol. 38, no. 4, 2008, ISSN: 10946977. DOI: 10.1109/TSMCC.2008.923862.

[12] M. M. Hasan and P. K. Mishra, “Hand Gesture Modeling and Recognition using Geomet-
ric Features : A Review,” Canadian Journal on Image Processing and Computer Vision, vol. 3,
no. 1, 2012.

[13] D. Mohr and G. Zachmann, “A Survey of Vision-Based Markerless Hand Tracking Ap-
proaches,” Computer Vision and Image Understanding, 2013.

[14] G. R. S. Murthy and R. S. Jadon, “A Review of Vision Based Hand Gesture recognition,”
International Journal of Information Technology and Knowledge Management, vol. 2, no. 2,
2009.

https://www.unitree.com/a1/
https://www.pwc.com.au/government/pwc-ai-analysis-sizing-the-prize-report.pdf
https://www.pwc.com.au/government/pwc-ai-analysis-sizing-the-prize-report.pdf
https://www.pega.com/ai-survey
https://doi.org/10.1155/2022/6952999
https://doi.org/10.48550/arxiv.2207.07742
https://arxiv.org/abs/2207.07742v1
https://doi.org/10.1109/CVPR.1992.223161
https://doi.org/10.1109/CVPR.1992.223161
https://doi.org/10.1023/A:1008078328650
https://doi.org/10.1109/JPROC.2003.823144
https://doi.org/10.1109/TSMCC.2007.893280
https://doi.org/10.1109/TSMCC.2008.923862

Bibliography 27

[15] F. Zhang, V. Bazarevsky, A. Vakunov, et al., “MediaPipe Hands: On-device Real-time
Hand Tracking,” CoRR, vol. abs/2006.10214, Jun. 2020. [Online]. Available: https://
arxiv.org/abs/2006.10214.

[16] T. L. Munea, Y. Z. Jembre, H. T. Weldegebriel, L. Chen, C. Huang, and C. Yang, “The
Progress of Human Pose Estimation: A Survey and Taxonomy of Models Applied in
2D Human Pose Estimation,” IEEE Access, vol. 8, 2020, ISSN: 21693536. DOI: 10.1109/
ACCESS.2020.3010248.

[17] H.-S. Fang, J. Li, H. Tang, et al., “AlphaPose: Whole-Body Regional Multi-Person Pose
Estimation and Tracking in Real-Time,” Nov. 2022.

[18] T. Simon, H. Joo, I. Matthews, and Y. Sheikh, “Hand Keypoint Detection in Single Images
using Multiview Bootstrapping,” CoRR, vol. abs/1704.07809, Apr. 2017.

[19] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “YOLOv7: Trainable bag-of-freebies sets
new state-of-the-art for real-time object detectors,” Jul. 2022.

[20] Z. Cao, G. Hidalgo, T. Simon, S. E. Wei, and Y. Sheikh, “OpenPose: Realtime Multi-Person
2D Pose Estimation Using Part Affinity Fields,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 43, no. 1, 2021, ISSN: 19393539. DOI: 10.1109/TPAMI.2019.
2929257.

[21] U. Iqbal, A. Milan, and J. Gall, “PoseTrack: Joint Multi-Person Pose Estimation and Track-
ing,” CoRR, vol. abs/2006.10214, Nov. 2016. [Online]. Available: http://arxiv.org/
abs/1611.07727.

[22] M. Andriluka, L. Pishchulin, P. Gehler, and B. Schiele, “2D Human Pose Estimation: New
Benchmark and State of the Art Analysis,” in 2014 IEEE Conference on Computer Vision
and Pattern Recognition, IEEE, Jun. 2014, pp. 3686–3693, ISBN: 978-1-4799-5118-5. DOI: 10.
1109/CVPR.2014.471.

[23] Google, Mediapipe Hands. [Online]. Available: https://google.github.io/mediapipe/
solutions/hands.html.

[24] ROS Official Wiki, Sep. 2022. [Online]. Available: http://wiki.ros.org/ROS/Concepts.
[25] A. Koubâa et al., Robot Operating System (ROS). Springer, 2017, vol. 1.
[26] M. Quigley, B. Gerkey, and W. D. Smart, Programming Robots with ROS: a practical intro-

duction to the Robot Operating System. O’Reilly Media, Inc., 2015, vol. 1.
[27] ROS Packages, 2022. [Online]. Available: http://wiki.ros.org/Packages.
[28] ROS Community, 2021. [Online]. Available: https://www.ros.org/blog/community/.
[29] Unitree Robotics, Unitree ROS, Nov. 2020. [Online]. Available: https://github.com/

unitreerobotics/unitree_ros.
[30] ROS bag, Jun. 2020. [Online]. Available: http://wiki.ros.org/rosbag.
[31] E. Weon, The Building Blocks of ROS 1, May 2021. [Online]. Available: https://foxglove.

dev/blog/the-building-blocks-of-ros1.
[32] Unitree Robotics, Unitree Legged SDK, 2020. [Online]. Available: https://github.com/

unitreerobotics/unitree_legged_sdk.
[33] Unitree Robotics, A1 Software Developer Guide, 2020. [Online]. Available: https://www.

trossenrobotics.com/Shared/XSeries/A1SoftwareGuidev2.0-en.pdf.
[34] X. B. Peng, E. Coumans, T. Zhang, T.-W. E. Lee, J. Tan, and S. Levine, “Learning Agile

Robotic Locomotion Skills by Imitating Animals,” 2020. [Online]. Available: https://
xbpeng.github.io/projects/Robotic_Imitation/2020_Robotic_Imitation.pdf.

[35] J. Chen and F. Dellaert, “A1 SLAM: Quadruped SLAM using the A1’s Onboard Sensors,”
Ph.D. dissertation, Nov. 2022. DOI: 10.48550/arxiv.2211.14432. [Online]. Available:
https://arxiv.org/abs/2211.14432v1.

[36] C. Gehring, P. Fankhauser, L. Isler, et al., “ANYmal in the Field: Solving Industrial In-
spection of an Offshore HVDC Platform with a Quadrupedal Robot,” in 2021, pp. 247–
260. DOI: https://doi.org/10.3929/ethz-b-000360083.

https://arxiv.org/abs/2006.10214
https://arxiv.org/abs/2006.10214
https://doi.org/10.1109/ACCESS.2020.3010248
https://doi.org/10.1109/ACCESS.2020.3010248
https://doi.org/10.1109/TPAMI.2019.2929257
https://doi.org/10.1109/TPAMI.2019.2929257
http://arxiv.org/abs/1611.07727
http://arxiv.org/abs/1611.07727
https://doi.org/10.1109/CVPR.2014.471
https://doi.org/10.1109/CVPR.2014.471
https://google.github.io/mediapipe/solutions/hands.html
https://google.github.io/mediapipe/solutions/hands.html
http://wiki.ros.org/ROS/Concepts
http://wiki.ros.org/Packages
https://www.ros.org/blog/community/
https://github.com/unitreerobotics/unitree_ros
https://github.com/unitreerobotics/unitree_ros
http://wiki.ros.org/rosbag
https://foxglove.dev/blog/the-building-blocks-of-ros1
https://foxglove.dev/blog/the-building-blocks-of-ros1
https://github.com/unitreerobotics/unitree_legged_sdk
https://github.com/unitreerobotics/unitree_legged_sdk
https://www.trossenrobotics.com/Shared/XSeries/A1SoftwareGuidev2.0-en.pdf
https://www.trossenrobotics.com/Shared/XSeries/A1SoftwareGuidev2.0-en.pdf
https://xbpeng.github.io/projects/Robotic_Imitation/2020_Robotic_Imitation.pdf
https://xbpeng.github.io/projects/Robotic_Imitation/2020_Robotic_Imitation.pdf
https://doi.org/10.48550/arxiv.2211.14432
https://arxiv.org/abs/2211.14432v1
https://doi.org/https://doi.org/10.3929/ethz-b-000360083

Bibliography 28

[37] N. T. Thinh, N. T. V. Tuyen, and D. T. Son, “Gait of quadruped robot and interaction based
on gesture recognition,” Journal of Automation and Control Engineering, vol. 4, no. 1, 2016.

[38] M. Fujita and H. Kitano, “Development of an Autonomous Quadruped Robot for Robot
Entertainment,” Autonomous Robots, vol. 5, no. 1, pp. 7–18, 1998, ISSN: 1573-7527. DOI:
10.1023/A:1008856824126. [Online]. Available: https://doi.org/10.1023/A:
1008856824126.

[39] Z. E. Warren, Z. Zheng, A. R. Swanson, et al., “Can Robotic Interaction Improve Joint
Attention Skills?” Journal of Autism and Developmental Disorders, vol. 45, no. 11, pp. 3726–
3734, 2015, ISSN: 1573-3432. DOI: 10.1007/s10803-013-1918-4. [Online]. Available:
https://doi.org/10.1007/s10803-013-1918-4.

[40] A. Bruce, I. Nourbakhsh, and R. Simmons, “The role of expressiveness and attention in
human-robot interaction,” in Proceedings 2002 IEEE International Conference on Robotics
and Automation (Cat. No.02CH37292), vol. 4, 2002, pp. 4138–4142. DOI: 10.1109/ROBOT.
2002.1014396.

[41] E. Coumans, https://github.com/erwincoumans/motion_imitation, 2021.
[42] A. Maltsev, How to improve Mediapipe Skeletons Recognition, May 2022. [Online]. Available:

https://medium.com/@zlodeibaal/how- to- improve- mediapipe- skeletons-
recognition-7c3009774dd4.

[43] J. Li, “Recent Advances in End-to-End Automatic Speech Recognition,” Ph.D. disserta-
tion, Nov. 2021. [Online]. Available: https://arxiv.org/abs/2111.01690.

[44] Q.-S. Zhu, J. Zhang, Z.-Q. Zhang, M.-H. Wu, X. Fang, and L.-R. Dai, “A Noise-Robust Self-
Supervised Pre-Training Model Based Speech Representation Learning for Automatic
Speech Recognition,” in ICASSP 2022 - 2022 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2022, pp. 3174–3178. DOI: 10.1109/ICASSP43922.
2022.9747379.

[45] B. Schmidt and L. Wang, “Depth camera based collision avoidance via active robot con-
trol,” Journal of Manufacturing Systems, vol. 33, no. 4, pp. 711–718, Oct. 2014, ISSN: 0278-
6125. DOI: 10.1016/J.JMSY.2014.04.004.

[46] M. Fischer and D. Henrich, “3D collision detection for industrial robots and unknown
obstacles using multiple depth images,” Advances in Robotics Research: Theory, Implementa-
tion, Application, pp. 111–122, 2009. DOI: 10.1007/978-3-642-01213-6{_}11/COVER.
[Online]. Available: https://link.springer.com/chapter/10.1007/978-3-642-
01213-6_11.

[47] Z. Li, B. Li, Q. Liang, W. Liu, L. Hou, and X. Rong, “A quadruped robot obstacle avoid-
ance and personnel following strategy based on ultra-wideband and three-dimensional
laser radar,” International Journal of Advanced Robotic Systems, vol. 19, no. 4, Jul. 2022, ISSN:
1729-8806. DOI: 10.1177/17298806221114705.

[48] S. Chamorro, J. Collier, and F. Grondin, “Neural Network Based Lidar Gesture Recogni-
tion for Realtime Robot Teleoperation,” in 2021 IEEE International Symposium on Safety,
Security, and Rescue Robotics (SSRR), 2021, pp. 98–103. DOI: 10.1109/SSRR53300.2021.
9597855.

[49] Quadruped, Quadruped A1 Documentation, 2022. [Online]. Available: https://docs.
quadruped.de/projects/a1/html/index.html.

https://doi.org/10.1023/A:1008856824126
https://doi.org/10.1023/A:1008856824126
https://doi.org/10.1023/A:1008856824126
https://doi.org/10.1007/s10803-013-1918-4
https://doi.org/10.1007/s10803-013-1918-4
https://doi.org/10.1109/ROBOT.2002.1014396
https://doi.org/10.1109/ROBOT.2002.1014396
https://medium.com/@zlodeibaal/how-to-improve-mediapipe-skeletons-recognition-7c3009774dd4
https://medium.com/@zlodeibaal/how-to-improve-mediapipe-skeletons-recognition-7c3009774dd4
https://arxiv.org/abs/2111.01690
https://doi.org/10.1109/ICASSP43922.2022.9747379
https://doi.org/10.1109/ICASSP43922.2022.9747379
https://doi.org/10.1016/J.JMSY.2014.04.004
https://link.springer.com/chapter/10.1007/978-3-642-01213-6_11
https://link.springer.com/chapter/10.1007/978-3-642-01213-6_11
https://doi.org/10.1177/17298806221114705
https://doi.org/10.1109/SSRR53300.2021.9597855
https://doi.org/10.1109/SSRR53300.2021.9597855
https://docs.quadruped.de/projects/a1/html/index.html
https://docs.quadruped.de/projects/a1/html/index.html

	Declaration of Authorship
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Motivation
	Problem Statement
	Work Outline

	Foundations and related works
	Gesture Recognition Technologies
	Pose Estimation Systems
	Robot Operating System (ROS)
	Unitree Legged Software Development Kit

	Methods
	Demonstrator Analysis
	Gesture Recognition
	Pose estimation
	Hand Gesture Recognition

	Implementation
	Robot Control
	User Interface
	Workflow

	Results
	Demonstrating AI with A1 Robot
	Limitations

	Discussion and Future Work
	Improving Usability and Robustness
	Enhancing the Capabilities of the Robot
	Conclusion

	Appendix
	Unitree A1 Instructions
	Connecting to Robot
	Driver Installation
	Connecting Robot to Internet
	Accessing the Camera Feed
	Unitree Legged SDK
	ROS

	Bibliography

